
Noname manuscript No.
(will be inserted by the editor)

Harnessing Large Language Models for Multitasking
AI Chatbot

Connor Hehn · Reyes Huerta · David
McNulty · Andrew Visceglia · Dr.
Sidike Paheding

Received: date / Accepted: date

Abstract The rapid growth of Artificial Intelligence (AI) in recent years has
been propelled by the development of generative AI applications from industry
leaders such as OpenAI, Google, and Microsoft. IBM characterizes a chatbot
as a computer program simulating human conversation, with contemporary
iterations increasingly integrating conversational AI techniques like Natural
Language Processing (NLP). These chatbots can be utilized across diverse do-
mains, including applications in home speakers, messenger apps, and virtual
assistants. An essential factor in the progression of modern AI chatbots is
the application of transformer models, exemplified by architectures like GPT-
3 (Generative Pre-trained Transformer 3). These models play a pivotal role
in enhancing the capabilities of conversational agents, especially through the
attention mechanism, which effectively captures contextual information, con-
tributing to more coherent and context-aware responses. This work is ded-
icated to leveraging the capabilities of large language models for the devel-
opment of a multitasking AI chatbot that is adept at handling both voice
and text commands. We implement various functionalities such as listening

Dr. Paheding
Fairfield University
E-mail: spaheding@fairfield.edu

C. Hehn
Fairfield University
E-mail: connor.hehn@student.fairfield.edu

R. Huerta
Fairfield University
E-mail: reyes.huerta@student.fairfield.edu

D. McNulty
Fairfield University
E-mail: david.mcnulty@student.fairfield.edu

A. Visceglia
Fairfield University
E-mail: andrew.visceglia@student.fairfield.edu



ii Connor Hehn et al.

to users, engaging in naturalistic conversations, providing maps or directions
for navigational purposes, and playing music, among others. Beyond these ad-
vanced features, the chatbot boasts language proficiency, enabling it to under-
stand and respond in five languages. This multilingual capability significantly
enhances the chatbot’s accessibility and usability, catering to a broader user
base. Ultimately, we intend to define the chatbot’s desired capabilities and
fine-tune existing language models to achieve the intended results.

Keywords Artificial Intelligence · WebApp · Flask

1 Introduction

The project is dedicated to leveraging the capabilities of large language models
for the development of a multitasking AI chatbot that is adept at handling
both voice and text commands. Furthermore, the implementation includes
various functionalities such as listening to users, engaging in naturalistic con-
versations, providing maps or directions for navigational purposes, and play-
ing music. Beyond these advanced features, the chatbot boasts multilingual
proficiency, enabling it to understand and respond in English, Spanish, Ital-
ian, French, and German. The multilingual capability significantly enhances
the chatbot’s accessibility and usability, catering to a broader user base. The
chatbot’s desired capabilities were fine-tuned using existing language models.

The overarching objective of this project was to deliver an accessible and
multitasking AI chatbot application, specifically tailored to meet the needs
of the Fairfield University community, in particular, first-year students and
prospective students. Ultimately, the significance of transformer models in
shaping the landscape of modern AI chatbots cannot be overstated, as they
empower these systems to provide more sophisticated and contextually aware
conversational experiences.

2 Related Work

Previous research has shown significant advancements in Artificial Intelligence
Chatbots, particularly working with large language models (LLM). Many com-
panies such as OpenAI, Microsoft, Meta and Google have developed language
models that are used in the field of AI. OpenAI’s model GPT-3 (Generative
Pre-trained Transformer) uses a transformer model to produce human-like
text [9]. Models like the one developed by OpenAI “write automatically and
autonomously texts of excellent quality, on demand” [9]. An additional model
developed by Google is called BERT (Bidirectional Encoder Representations
from Transformers). BERT is a state of the art model built for a “range of
tasks, such as question answering and language inference” [8]. Needless to say
there are many companies involved in the artificial intelligence field building
language models using transformers. The consequences of these advancements



Multitasking AI Chatbot iii

cannot be understated, “it is the biggest transformation of the writing process
since the word processor” [9].

Products utilizing language models are becoming more available as ad-
vancements continue to be made. One recent product such as the Rabitt R1
uses AI in this sense. The product is described as “standalone AI device” [11].
This device has the capability to “control your music, order you a car, buy
your groceries, send your messages, and more” [11]. The ability to control apps
is due to the creation of the Large Action Model (LAM), “trained by humans
interacting with apps like Spotify and Uber, essentially showing the model
how they work.” [11]. Artificial Intelligence has grown significantly in the past
years and some of the “most significant consequences are already imaginable”
[9].

By leveraging existing language model technology and fine tuning them for
the specific requirements of our project, we aim to provide a unique solution
to Fairfield University students.

3 Methodology

The methodology of building the web application includes various tools such
as APIs, language models, multiple programming languages, and the Flask
framework. Flask is a lightweight python framework useful for building web
applications [1]. Python is the primary programming language used for server
side logic [7]. The Flask framework allows the creation of RESTful APIs using
python. Flask was used with other various libraries to help achieve the desired
multitasking functionality, such as speech recognition, mapping, and music
capabilities. The architecture for the application can be seen in Figure 1. The
figure showcases how the specific modules interact with each other. The specific
models for each functionality are outlined in the following sections.

3.1 Language Model

The large language model (LLM) was specifically chosen from Hugging Face
with the intention of being fast, accurate, and free. Among various language
models tested, the language model that was ultimately chosen was the Mixtral-
8x7B. This model is a pre-trained generative Sparse Mixture of Experts, which
follows the GPT (Generative Pre-trained Transformer) architecture, but uses
a sparse mixture of experts that enhances its capabilities beyond a standard
GPT model [10]. The model “outperforms Llama 2 70B on most benchmarks”
[10]. This model was incorporated into the web application using Hugging Face
Hub endpoints [3]. Hugging Face Hub allows easy interaction between python
code and language models on Hugging Face such as Mixtral-8x7B.

To achieve proper functionality with the language model using Hugging
Face endpoints, there are multiple methods used to correctly format the input
and output of the conversation. In addition, there are also multiple parameters



iv Connor Hehn et al.

Flask APIs

Language
Model

Mapping
Model Music Model

HuggingFace
API

HuggingFace
API

HuggingFace
API

User

User Interface

Speech
Recognition

Fig. 1 High Level Architecture of Application.

used by the model such as: system prompt, temperature, max new tokens, top-
p (nucleus sampling), and repetition penalty. System prompt is a string passed
to the language model which provides the initial context for the conversation.
In the case of this application, the model was prompted with the instructions
that it is a virtual assistant, located at Fairfield University. This context helps
the model answer questions related to Fairfield University. The system prompt
is helpful in creating the language selector functionality in the application. By
having the same system prompt in multiple languages, the application will use
the system prompt in the language selected by the user, thus producing an
output in that same language selected. The temperature parameter determines
the randomness of the responses. The max tokens parameter limits the size of
the response from the model. Top-p (nucleus sampling) is a parameter in which
a higher value produces more low-probability tokens. This helps in generat-
ing diverse yet comprehensive outputs. The final parameter is the repetition
penalty, which determines how the model penalizes tokens that have already
appeared in the output. A higher value leads to more diverse outputs. The
parameters listed above provide the unique context for the application built,
and provide a unique user experience to the end users, specifically designed
for use at Fairfield University.



Multitasking AI Chatbot v

3.2 Music Model

In order to achieve our desired music functionality we utilized the Spotify
Web API in our multitasking AI chatbot. Access to Spotify was achieved
through a free developer account which granted us an access token required
to authenticate our API requests. The OAuth 2.0 is an industry-standard for
authorization, and ensures that only those with express access to the chatbot
are able to be properly authenticated. Spotify’s API was a clear standout
among competitors; the extensive music catalog and wide search engine made
it a perfect match for our desired music functionality.

The API is prompted and requested through our application’s Flask end-
points. Spotify requests are separated into two routing functions, one to handle
the music search and another to perform the audio playback. Returned param-
eters about the songs include track name, album name, artist, album image,
and finally the preview URL which contains the 30-second song preview.

To access the music functionality, users are able to select the Spotify button
on the left hand navigation. Once an artist name or song is searched, the top
five closest results are returned. Users can select their desired track to play a
quick preview.

3.3 Mapping Model

The mapping functionality for the chatbot application was achieved through
Python code that leveraged the GraphHopper API for geocoding and routing.
GraphHopper is an open-source routing engine built on top of OpenStreetMap
(OSM) data that is primarily designed for solving complex routing problems
for several modes of transportation (driving, walking, biking, etc.)[6]. By pro-
viding powerful tools to integrate routing capabilities into web and mobile
applications, GraphHopper enables users to obtain precise directions and op-
timized routes in an efficient manner. The geocoding API converts textual
addresses into geographic coordinates (latitude and longitude). This is useful
for finding exact locations based on user-provided address data. The param-
eters typically include the query string and an API key. The routing API
calculates routes between given coordinates for various forms of transport. In
this case, the desired mode of transportation was walking. The API returns
detailed route information including distance, estimated time, and step-by-
step directions. Another key benefit of this API is its support for polyline
encoding of the route path, which can be decoded to display routes on maps.
The parameters include the starting point, vehicle type, and API key.

The following libraries were required to achieve the desired mapping func-
tionality: requests (for making HTTP requests)[5], folium (for creating inter-
active maps)[2], polyline (for decoding polylines returned by the routing API
into coordinate lists)[4], and ipywidgets as well as IPython.display (for creat-
ing and displaying interactive widgets). The geocoding function was created
in order to make a geocoding request to the GraphHopper API. It constructs



vi Connor Hehn et al.

a URL for the GraphHopper geocoding endpoint, sends a GET request, and
parses the response JSON to extract latitude and longitude coordinates of the
result. Moreover, dropdown widgets were created using ipywidgets to allow
the user to select start and end locations from a predefined list of locations
on Fairfield University’s campus. The locations are sorted alphabetically for
easier user interaction. Furthermore, a button for triggering the route calcula-
tion and an output widget to display results (interactive map, distance, time,
and directions) were set up. When the user clicks the button, the route cal-
culation function is called. This function retrieves the selected start and end
locations from the dropdowns, calls the geocoding function to obtain coordi-
nates for these locations, constructs a routing URL using these coordinates
and makes a GET request to the GraphHopper routing API, and parses the
routing API response to display the total distance, time, and step-by-step
walking directions. Ultimately, an interactive map is generated showing the
route with markers for the start and end points and a line tracing the route
based on the decoded polyline.

GraphHopper competes with several other routing engines like OSRM
(Open Source Routing Machine), Google Maps, and Mapbox Directions; how-
ever, GraphHopper allows for customization and integration without the high
costs associated with its competitors. The decision to select GraphHopper
to achieve the desired mapping functionality came down to its cost (entirely
free) as well as its ability to provide fast and reliable walking directions for
navigating Fairfield University’s campus.

3.4 Speech Recognition Model

The speech recognition functionality for the application enables users to seam-
lessly interact with the application using spoken commands. This feature en-
hances user functionality and accessibility. The model chosen for speech recog-
nition is the webkitSpeechRecognition which is part of the Web Speech API
provided by modern web browsers. When a user presses the record speech
button, a new speech recognition object is created. Based on specific handlers,
the spoken text is then inputted into the text area and automatically sub-
mitted to the chatbot for processing. This model is not implemented in the
Flask back-end written with Python, instead it is written in JavaScript. This
methodology allows for faster processing and a shorter delay when using the
speech recognition model.

4 Results and Discussion

Our chatbot web application, titled StagChatbot, provides a flexible interface
for interaction. Users can engage in discussions or ask any question by simply
typing into the text box, ensuring a seamless communication. As an alternative
option, they can explore preset questions specifically related to Fairfield Uni-
versity, catering to a more tailored experience. To enhance accessibility, users



Multitasking AI Chatbot vii

Fig. 2 Conversational usage of the application.

also have the option to switch the language to their preferred native language
all while promoting inclusively and comfort in communication. Languages in-
cluded are English, Spanish, German, Italian, and French. Furthermore, our
speech recognition feature enables users to engage in an immersive text-to-
speech conversation with our AI chatbot, creating a dynamic and interactive
experience. Whether typing or speaking, our chatbot aims to facilitate seam-
less communication and engagement for all of our users. This functionality can
be seen in Figure 2.

Fig. 3 Music functionality of the application.

When navigating our web application, the user will be able to locate the
Spotify functionality that’s positioned in the left-hand navigation bar. Upon
selecting the Spotify feature, users will then be asked by the chatbot to identify



viii Connor Hehn et al.

what song title or artist they would like to listen to. For example, when a user
types in “Adele” as the artist, the chatbot will then provide the top 5 Adele
songs. Once the top 5 songs are listed, the user may select a song they would
like and listen to a 30-second snippet that would give the user a taste of
what the song is about. But, it’s also important to keep in mind that, even
if our Spotify feature improves the user experience, the preview URLs might
not be available for every song. However, this functionality offers consumers
a smooth and entertaining way to explore music within our web application.
This functionality can be seen in Figure 3.

Fig. 4 Mapping functionality of the application.

Right underneath our Spotify functionality, the user can also locate the
mapping functionality to seamlessly navigate throughout our university cam-
pus. This feature works exceptionally well with any prospective student or
first-year student trying to navigate through campus for the first time. When
selecting the mapping functionality, the user will be prompted with two list
selections. The first list selection is for the user to select the starting location
where the user is currently while the second list selection is for the user to
select the ending location where the user wants to go. In Figure 4, we can see
how the user selected The Kelley Center (where admissions is located) as its
starting location and the Campion Hall (a first year dorm building) as the
ending location. Once the user has the starting and ending locations set, then
the chatbot will give a written explanation which includes the total distance,
total time, and directions in feet of the travel to the desired location as well
as a visual map that shows the user the route with both the starting location
highlighted in green and the ending location highlighted in red. Finally, for
a better-detailed experience, the user will be able to see the names of every
building, facility, and field on campus for a more immersive and user-friendly
experience. This functionality can be seen in Figure 4.



Multitasking AI Chatbot ix

5 Conclusion and Future Work

The final version of the StagChatbot achieved all of its desired functionality.
StagChatbot is the first chatbot of its kind for the Fairfield University com-
munity; the application was completely built from the ground up. Currently,
the application is being hosted as a web application on Hugging Face Spaces
at the following link:

https://huggingface.co/spaces/StagChatbot/Multitasking-Chatbot

The graphical user interface (GUI) includes buttons for the user to select the
“Instructions” for using the chatbot, starting a “New Chat,” navigating to
either the “Spotify” or “Map” functionality, and a drop down select list for
choosing a language to interact with the chatbot (English, Spanish, Italian,
French, or German). The user has the option to manually type in their mes-
sage to the chatbot, select one of the pre-existing prompts, or record their
speech. Ultimately, the language model was pre-prompted to expect user in-
put regarding Fairfield University in order to ensure heightened accuracy in
its generated results. Furthermore, the user can obtain detailed step-by-step
walking directions from one location to another on Fairfield University’s cam-
pus, along with the total time and distance required to reach their destination.
Another key feature of the mapping functionality is the interactive map that
is returned with the previously aforementioned output. This map indicates the
start and end locations with color-coded pins as well as the path the user will
follow. Moreover, the Spotify functionality enables the user to request either
an artist or song title. The returned results will consist of the five options that
most closely match the user’s request. The user has the option of playing a
30-second sample of the song they requested.

There are several enhancements that future versions of StagChatbot hope
to have employed. First off, the current version of StagChatbot does not store
any user data. In the future, a database could be connected to the application
that enables users to create their own account and interact with the chatbot
concurrently without interference. This would require the knowledge of a cy-
bersecurity expert to help ensure that user data is being handled safely and
ethically. Another enhancement would be eventually transitioning the chatbot
from a web application to an iOS or Android application. This would allow
for users to more easily access the chatbot on their mobile devices and tablets.
An alternative to creating a new mobile application would be integrating the
chatbot with the pre-existing “Fairfield U” app. Additionally, future versions
of the chatbot could include brand-new functionality and/or updates to pre-
existing functionality (mapping, Spotify, etc.). Ultimately, the language model
can be further enhanced by training it on more data pertaining to Fairfield
University and the greater Fairfield community.

Acknowledgements The successful completion of this project would not have been pos-
sible without supervision of Dr. Sidike Paheding, guidance from Professor Akshay Mathur,
and support from the Fairfield University School of Engineering and Computing.

https://huggingface.co/spaces/StagChatbot/Multitasking-Chatbot


x Connor Hehn et al.

References

1. Flask documentation. https://flask.palletsprojects.com/en/2.1.x/. Accessed:
May 2024

2. Folium documentation. https://python-visualization.github.io/folium/. Ac-
cessed: May 2024

3. Hugging face hub documentation. https://huggingface.co/docs/hub/. Accessed: May
2024

4. Polyline documentation. https://pypi.org/project/polyline/. Accessed: May 2024
5. Python requests documentation. https://docs.python-requests.org/en/latest/. Ac-

cessed: May 2024
6. Graphhopper documentation (2017). URL https://www.graphhopper.com/

7. Python documentation (2024). URL https://www.python.org/

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

9. Floridi, L., Chiriatti, M.: Gpt-3: Its nature, scope, limits, and consequences. Minds and
Machines 30, 681–694 (2020)

10. Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot,
D.S., de las Casas, D., Hanna, E.B., Bressand, F., Lengyel, G., Bour, G., Lample,
G., Lavaud, L.R., Saulnier, L., Lachaux, M.A., Stock, P., Subramanian, S., Yang, S.,
Antoniak, S., Scao, T.L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.:
Mixtral of experts (2024)

11. Pierce, D.: The rabbit r1 is an ai-powered gadget that can use your
apps for you (2024). URL https://www.theverge.com/2024/1/9/24030667/

rabbit-r1-ai-action-model-price-release-date

https://flask.palletsprojects.com/en/2.1.x/
https://python-visualization.github.io/folium/
https://huggingface.co/docs/hub/
https://pypi.org/project/polyline/
https://docs.python-requests.org/en/latest/
https://www.graphhopper.com/
https://www.python.org/
https://www.theverge.com/2024/1/9/24030667/rabbit-r1-ai-action-model-price-release-date
https://www.theverge.com/2024/1/9/24030667/rabbit-r1-ai-action-model-price-release-date

	Introduction
	Related Work
	Methodology
	Results and Discussion
	Conclusion and Future Work

